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Abstract
Recent studies on the phase-space dynamics of a one-dimensional Lennard-
Jones fluid reveal the existence of regular collective perturbations associated
with the smallest positive Lyapunov exponents of the system, called
hydrodynamic Lyapunov modes, which previously could only be identified
in hard-core fluids. In this work we present a systematic study of the Lyapunov
exponents and Lyapunov vectors, i.e. perturbations along each direction of
phase space, of a three-dimensional Lennard-Jones fluid. By performing the
Fourier transform of the spatial density of the coordinate part of the Lyapunov
vector components and then time-averaging this result we find convincing
signatures of longitudinal modes, with inconclusive evidence of transverse
modes for all studied densities. Furthermore, the longitudinal modes can
be more clearly identified for the higher density values. Thus, according
to our results, the mixing of modes induced by both the dynamics and the
dimensionality induces a hitherto unknown type of order in the tangent space
of the model herein studied at high density values.

PACS numbers: 05.45.Jn, 05.45.Pq, 02.70.Ns

1. Introduction

In recent years it has been possible to study in detail the underlying chaotic dynamics
of many-particle systems, thus finding interesting connections between their microscopic
dynamics and the observed macroscopic behavior. For example, in the case of static
properties, the largest Lyapunov exponent (LLE), which measures the dynamical instability
of phase-space trajectories to infinitesimal perturbations of the initial conditions, is related to
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the Kosterlitz–Thoules transition temperature in a system of coupled rotators with nearest-
neighbor interactions [1], as well as to first- [2] and second-order phase transitions [3] in
particle systems with long-range interactions. For dynamical properties, the sudden change
in the gradient of the LLE against energy, which corresponds to the transition from weak to
strong chaos, can be detected in the macroscopic behavior of a Brownian particle coupled to the
system [4]. It has also been related to transport coefficients of fluid systems with continuous
potentials in non-equilibrium situations [5]. In equilibrium, a relation has also been proposed
[6], although for this case arguments both against [7] and in favor [8] have been advanced.
Nevertheless, these last results entail interesting possibilities, since they suggest that dynamical
instability is at the origin of macroscopic transport phenomena. Two different methodologies
have related the Lyapunov spectrum (LS), defined as the sorted set of Lyapunov exponents
(LEs) which give the exponential rate of expansion or contraction of nearby trajectories along
each independent component of the phase space, to the transport coefficients of simple fluids
[9, 10]. However, they involve setting up non-equilibrium simulations or locating special
phase-space trajectories. Furthermore, neither of these approaches considers the perturbations
in phase space underlying the LEs, which have attracted a lot of attention in recent years.
Therefore, it would be desirable first to attain a more thorough understanding of the phase-
space perturbations associated with the LEs of the most general type of dynamical models
employed to study fluid systems before attempting the construction of a general theory that
could relate, with enough confidence, the dynamical instability to the macroscopic behavior
as described by the transport coefficients.

For some particular many-particle systems, e.g. hard-sphere fluids, the theory of LEs is
highly developed [11]. Nevertheless, their most interesting features have been discovered
by means of molecular dynamics simulations, which revealed that the slowly-growing and
decaying perturbations associated with the non-vanishing LEs closest to zero are related to,
and in some cases may even be represented as, almost exact periodic vector fields coherently
spread out over the physical space with well-defined wave vectors, together with an almost
precise stepwise structure of the considered LEs [12]. From their similarity to the classical
modes of fluctuating hydrodynamics, these perturbations have been named Lyapunov modes
(LMs). Since their discovery [13], much work has been done to understand their origin
and possible relevance. Some analytical approaches that have been advanced to understand
these small LEs include random-matrix dynamics [14, 15], periodic orbit models [16] and
kinetic theory [17, 18]. All these approaches have met with only a very limited success, since
none of them has been able to satisfactorily describe the mode dynamics in all the known
situations accessible to simulations. A more serious drawback is that neither has been capable
of extracting the transport coefficients from the LMs, or of relating them, in a simple way, to
hydrodynamic fluctuations.

Until recently the existence of these LMs could only be verified in one, two and three-
dimensional hard-sphere fluids [13]; their existence in the case of atomic fluids with soft
interactions (both attractive and repulsive) remained controversial [19], since certain features,
such as the step structure in the LS, disappear in soft-potential systems. Hence, to extend the
concept of LMs beyond the realm of hard-core systems, a more generic definition has to be
adopted, which involves both the appearance of a sharp peak of low wave number in the spatial
Fourier spectrum of LVs corresponding to the LEs closest to zero and of a minimum in the
average spectral entropy, defined in section 4.2 of the present work, in that same LE region.
Employing this more generic definition convincing evidence of the existence of the so-defined
LMs was obtained for some soft-potential systems, namely in fluids with a one-dimensional
(1D) Lennard-Jones (LJ) [20], where the aforementioned definition of LMs and the spectral
analysis techniques needed to detect them were developed, and two-dimensional (2D)
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Weeks–Chandler–Anderson (WCA) interaction potentials [21]. More recently, the existence
of LMs has also been verified in lattices of coupled Hamiltonian and dissipative maps [22–24],
as well as in Fermi–Pasta–Ulam anharmonic oscillator lattices [25]. Thus all information so far
available seems to indicate that the Hamiltonian structure, conservation laws and translational
invariance are not necessary conditions for the existence of LMs. Nevertheless, since there is
no theoretical scheme that can predict the existence of LMs, the discovery and characterization
of LMs has to be done in a case-by-case basis. For example, the introduction of damping in a
system of coupled Hamiltonian maps does not destroy the LMs, whereas the addition of that
same damping to a system of coupled circle maps wipes off the LMs [23]. Therefore, although
LMs are present in the aforementioned systems, their existence is in no way guaranteed in
other situations not studied so far, such as in three-dimensional Hamiltonian fluid systems
with both attractive and repulsive interactions.

In this paper we perform a study of the dynamical instabilities of a three-dimensional
(3D) atomic fluid interacting with the full LJ potential under the simulation conditions most
frequently encountered in molecular dynamics studies [26]. We assess the validity of various
dynamical indicators previously proposed in the literature for our particular system. The main
result of our work is that, although the spectral analysis methods proposed in [20] can be readily
applied to our system, the dimensionality greatly enhances the mixing among perturbations
that was already present in the case of the 1D LJ gas, thus rendering both the detection and
characterization of the collective perturbations even more problematic.

This paper is organized as follows: in section 2 we present a survey of the model, as well
as the computational details needed to obtain our results in the phase space of our system as
well as a short account of the relevant theory necessary to study the perturbations of the phase
space. Section 3 describes the results for the complete LS, its dependence on the particle
density and provides evidence of the mixing among perturbations. In section 4 we show
the results of the spectral analysis methods applied to the proposed dynamical indicators.
Section 5 is devoted to discussing and analyzing the results reported in the previous sections.
In the appendix we report some preliminary results for the temporal correlations of the phase-
space perturbations. We present our conclusions in section 6.

2. The model and simulation details

2.1. Phase-space dynamics

The LJ potential ULJ(r) between particles i and j is given by

ULJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6
]

, (1)

where r ≡ rij is the distance between particles i and j ; here σ and ε are the LJ atom diameter
and the strength of the interparticle interaction, respectively. The actual interaction potential
employed in our simulations is the spherically truncated and shifted (STS) potential, which
can be written as

U(r) =
{

ULJ(r) − ULJ(rc) r � rc

0 r > rc,
(2)

where rc = 2.5σ is the cut-off radius at which the potential is truncated in order to save
computer time. It is important to note that the force derived from the above potential, as well
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as its derivative, is not continuous at the truncation point rc. Therefore the following potential,
first proposed in [27], can be employed:

U(r) =

⎧⎪⎨⎪⎩4ε

[(
σ

r

)12

−
(

σ

r

)6
]

+ c2

(
r

rc

)2

+ Uc r � rc

0 r > rc,

(3)

with c2 = 4ε[6(σ/rc)
12 − 3(σ/rc)

6] and Uc = 4ε[−7(σ/rc)
12 + 4(σ/rc)

6]. This potential has
a continuous derivative at the truncation point rc. Nevertheless, for the 1D LJ model it has
been shown, by adopting the above expression for the potential, that the qualitative behavior
of the LMs is not greatly affected by the discontinuity of the STS potential at rc [20]. In the
next section it will be shown explicitly that this same phenomenology holds for our 3D LJ
fluid. The complete Hamiltonian of our system is then

H =
N∑

i=1

p2
i

2mi

+
∑
i<j

U(rij ), (4)

with {pi} being the momenta of the atoms and {mi} their corresponding masses. In all our
simulations we took the masses of the atoms equal to unity, i.e. mi = m = 1 ∀ i, with
σ = 1, and ε = 1 as well. The Hamiltonian is then written in terms of the reduced variables
r∗ = r/σ, p∗

i = pi/(mε)1/2 and m∗
i = mi/m.

The initial configuration for all simulations was set up from a fcc lattice on a square cell
of sides L∗ = L∗

x = L∗
y = L∗

z . The initial momenta were drawn from a Maxwell–Boltzmann
distribution. Then the 6N equations of motion were numerically integrated by means of
the Verlet leap-frog algorithm with periodic boundary conditions and the minimum image
convention applied in all directions. A time-step of �t∗ = �t(ε/m)1/2/σ = 0.001 was
used in all simulations, with an equilibration period of 100 000 steps at constant temperature
obtained by a uniform rescaling of the velocities at each time-step. After the equilibration
period the system was allowed to evolve at constant total energy for a period of 106 time-steps.
The relative energy drift for this number of time-steps is 10−4–10−5, which is an acceptable
compromise between accuracy and speed, since there is no systematic drift, and thus the
energy fluctuations are stable for the chosen time-step. All the reported results were obtained
for systems of N = 108 at a supercritical reduced temperature of T ∗ = kBT /ε = 1.5, where
kB is the Boltzmann constant. The reduced densities ρ∗ = ρσ 3 were taken within the range
ρ∗ ∈ [0.01, 0.5]. The critical temperature and density for the LJ fluid with STS potential are
T ∗

c = 1.085 and ρ∗
c = 0.317 [28]; thus the employed values for these variables ensure that

the system state is far away from the two-phase region in the ρ∗ versus T ∗ phase diagram,
being a homogeneous fluid. Finally, since in the rest of the work reduced variables will be
exclusively employed, from now on we will drop the asterisk from all symbols without the
risk of confusion.

2.2. Tangent-space dynamics

The phase-space trajectory is represented by the variable Γ(t) ≡ (Γ1(t),Γ2(t), . . . ,ΓN(t)),
where Γi (t) ≡ (ri (t), pi (t)). To study the local dynamical stability of our system we
introduce the Lyapunov vector (LV) as δΓ(α)(t) ≡ (

δΓ(α)
1 (t), δΓ(α)

2 (t), . . . , δΓ(α)
N (t)

)
, where

α = 1, . . . , 6N and δΓ(α)
i (t) ≡ (

δrα
i (t), δpα

i (t)
)

representing the ith particle contribution to
the infinitesimal perturbations of the trajectory Γ(t) along all possible directions (position and
momentum axes) of the phase space, thus defining the so-called tangent space.
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According to Oseledec’s multiplicative ergodic theorem [29] the remote past limit
symmetric operator �b(t) = limt0→−∞[M(t, t0) · MT(t, t0)]1/[2(t−t0)] exists for almost
every initial condition Γ(t0), where M(t, t0) is the fundamental matrix governing the
time evolution of the perturbations δΓ(t) in tangent space as δΓ(t) = M(t, t0) · δΓ(t0)

[10]. The set of instantaneous LEs is defined as λ(α)(t) = ln 	(α), where 	(α) are the
eigenvalues of �b(t). The herein employed standard procedure for computing the LEs
consists in periodically reorthonormalizing a set of offset vectors that are time-evolved by
means of the matrix M(t, t0) [30, 31]. The time-averaged values of the logarithms of the
renormalization factors, i.e. 〈ln 	(α)〉t are the LEs {λ(α)} and the set of offset vectors right
after the reorthonormalization are the eigenvectors of �b(t), which are called backward
LVs. The equivalence of the LEs computed by means of these two methods can be proved
rigorously [32], but the relation between the Oseledec eigenvectors and the LVs obtained
via the standard method is more subtle. It is known that the backward LVs converge at an
exponential rate to the Oseledec eigenvectors for the inverse-time dynamics of the original
system [33, 34]. The latter are obtained as the eigenvectors of the far future limit operator
�f(t) = limt0→∞[MT(t0, t) · M(t0, t)]1/[2(t0−t)] and are called forward LVs. It is to be noted
that recently it has been possible to obtain from the intersection of the embedded subspaces
spanned by the eigenvectors of �b(t) (backward LVs) and �f(t) (forward LVs) the so-called
characteristic LVs, which are independent of the norm and do not form an orthogonal basis
[35]. A somewhat similar algorithm has also been proposed in [36]. The aforementioned
schemes are based on ideas already discussed long ago [37], but have only been recently
proposed because their implementation is by no means a simple task from a computational
point of view, which is why they only have been tested in simple 1D systems. Thus it is
not at all clear that their implementation could be feasible in the near future for the case of
our system. Furthermore, since the purpose of the present work is to investigate the possible
existence of LMs in a 3D LJ fluid, it is important to recall that the discovery of LMs in all
studied systems so far has been made employing the backward LVs. So it seems that the use
of the CLVs is not essential for the detection of LMs. Finally, meaningful results are still
obtained by means of the backward LVs obtained from the standard procedure, such as in the
recent characterization of LMs in a diatomic system [38] and the discovery of LMs in the
XY rotator model [39]; in both studies the backward LVs were employed. Therefore, from
now on we will refer to the numerically computed vectors (backward LVs) as the LVs without
confusion.

In the Hamiltonian case (which we treat here), and also in some special homogeneous
non-equilibrium situations [40], the LEs and the corresponding LVs have a symmetry property
which makes it unnecessary to calculate the whole spectrum. In these cases the LS thus
computed is symmetrical around zero, which means that each LE has a partner that is exactly
its negative. This is the so-called conjugate-pairing rule [41]. Therefore, only 3N linearized
equations for the LVs were simultaneously integrated, along with the 6N nonlinear equations
for the reference trajectory Γ(t). The initial LVs δΓ(α)(t0) in all our simulations consisted of
a set of 3N orthogonal vectors with randomly selected components.

3. Lyapunov spectrum

As mentioned in the previous section, both the force derived from the STS potential and its
derivative are not continuous at rc. In order to assess the relevance of this particular feature
in the computation of the properties in the tangent space we perform additional simulations
employing the potential given by equation (3). In figure 1 we present the LS computed from
this last potential, as well as that computed by means of the STS potential, for T = 1.5, ρ = 0.1
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0030020010
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λ(1
)

Figure 1. LS {λ(α)} as a function of the Lyapunov index α computed for a system with the STS
potential (circles) and the potential defined by equation (3) (diamonds). The thermodynamic state
in both cases is defined by ρ = 0.1 and T = 1.5, with N = 108.

-0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75

λ(α)

10
-3

10
-2

10
-1

P
(λ

(α
) )

P( λ(1)
)

P( λ(320)
)

Figure 2. Probability density function of the instantaneous LEs λ(1) = 1.014 (circles) and
λ(320) = 0.011 (squares) for ρ = 0.01. Filled symbols correspond to the results obtained with the
potential given by equation (3). Average taken over 2 × 106 integration time-steps. Same N and T
values as in figure 1. Vertical dot-dashed lines indicate the values for λ(1) and λ(320).

and N = 108. As can be readily appreciated there are no significant differences, a result which
supports the use of the simpler STS potential. The most relevant feature of this figure is that,
as in the case of the 1D LJ gas, in the smallest positive LE region there is no evidence of the
stepwise structure that signals the appearance of the LMs in the case of hard-core systems.
Thus, it is plausible that the same mechanism that accounts for the absence of the stepwise
structure in the LS of the 1D LJ gas is also at work in the present model.

In figure 2, we present the probability density function for the instantaneous LEs λ(1)

and λ(320) for N = 108 and ρ = 0.01. It can be observed that the fluctuations around their
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Figure 3. Normalized LS {λ(α)/λ(1)} as a function of the Lyapunov index α for all employed
values of the reduced density ρ and a reduced temperature of T = 1.5, with N = 108.

Table 1. Length L of the cubic simulation cell along with the values of the LLE for each reduced
density value.

ρ L λ1

0.01 22.104 1.014
0.025 16.287 1.531
0.05 12.927 2.033
0.1 10.260 2.606
0.25 7.560 3.496
0.5 6.000 4.349

mean values increase as the Lyapunov index α increases, i.e. when going from a high to a low
value of the LE. It is to be observed that the fluctuations in the λ(320) value are so great that
the tails in the probability density function overlap with those corresponding to λ(1). These
large fluctuations are certainly a reason why no stepwise structure can be found in the low-α
region of the LS. Other dynamical indicators that we will present later on are also affected by
this behavior of the LS at large α values. In the same figure results for the potential given by
equation (3) are also presented; these are quite similar to those obtained with the STS potential.
Thus it is confirmed that the aforementioned fluctuations are not a result of the discontinuity
of the STS potential at rc. Therefore this potential will be used in the rest of this work. Other
dynamical indicators that we will present later on are also affected by this behavior of the LS
at large α values.

In figure 3 we show the normalized LS for N = 108 and T = 1.5 computed for the
employed range of reduced densities. The values of the scalar length of an edge of the cubic
simulation cell, as well as the values of the LLE corresponding to each value of the reduced
density, are reported in table 1. As can be readily appreciated in figure 3, the LS {λ(α)}
corresponding to the lowest density ρ = 0.01 can be separated into two regions. In both of
them the LS is a decreasing function of the Lyapunov index α, but in the former the decrease
is more pronounced than in the latter. This bending of the LS has been observed in a quasi-1D
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hard-disk gas [42] as well as in the 1D LJ gas [20], and has been related to the separation of two
timescales. To properly explain this point it is important to remember that each LE indicates
a timescale given by its inverse, so the LS can be considered as a spectrum of timescales. The
smallest positive LE region of the spectrum is dominated by macroscopic time and length scale
behavior. On the other hand, the opposite region of the LS is dominated by short timescale
behavior, such as local collision events. As the density increases, the collisions increase both in
frequency and in the number of particles involved; the correlation among them increases, and
becomes increasingly difficult to distinguish them individually. Thus it is no longer possible
to make a separation of timescales, and so the LS does not present the aforementioned bending
for ρ � 0.1. Although this explanation is plausible for the LS of our 3D LJ fluid, we also
point out that the bending depicted in figure 3 for ρ = 0.01 (the lowest reduced density value
employed) is less pronounced than the corresponding lowest density instance of the LS of the
1D LJ gas [20]. We interpret this fact as a signature that, even for the lowest density case,
the effect of the dimensionality in the microscopic events is to enhance the correlation among
them, and thus reduce the separation of timescales that is more evident in the 1D case. This
explanation will be further supported in the next sections.

4. Spatial structure of tangent-space perturbations

4.1. Spatial Lyapunov vector density

As discussed in section 3, the strong fluctuations of the smaller LEs make the perturbations
in tangent space extremely unstable, rendering any coherent structure that may exist in
configuration space difficult to detect. To investigate the possibility that these structures
(LMs) exist in the case of the 3D STS LJ potential we have to establish a measure of the
contribution of a given LV δΓ(α)(t) at each point r of the configuration space, regardless of
which particle makes the contribution to the magnitude of the chosen LV. We have to remember
that the ith particle contribution to the infinitesimal perturbation δΓ(α)(t) consists of spatial
and momentum components. Since the LMs can be in general considered as Goldstone modes
resulting from translational invariance in coordinate space [18], we will consider only the
spatial part of the full perturbation component δΓ(α)

i (t). Thus, in analogy with the definition
of microscopic density fluctuations [43], we define the spatial LV density as

u(α)(r, t) =
N∑

i=1

δr(α)
i δ(r − ri ), (5)

which was first introduced in [44] and is the function to be studied afterward. In figure 4,
we present a snapshot of a single component u(α)

z (z, t) = ∑N
i=1 δz

(α)
i δ(r − ri ) of the

aforementioned spatial density along the z-axis of our system. Since the latter is isotropic,
the results are completely analogous to those corresponding to the u(α)

x and u(α)
y components

projected along their respective coordinate axes. We can readily appreciate that the spatial
density corresponding to the LLE is more localized than that corresponding to the LE with
α = 320, which is the lowest index value corresponding to a LV not related to the space and
time translational invariance symmetries of the system and the associated conserved quantities,
the total energy and the total momentum [17]. A point to be noted is that the localization
of the LLE is not so clearly defined and strong as in the 1D LJ system [20] or in hard-disk
systems [42]. This is another indication that the dimensionality of the system has indeed a
strong influence on the tangent-space dynamics.
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Figure 4. Snapshot of the spatial LV density component u(α)
z (z, t) along the z-axis of the simulation

box for a LJ fluid of N = 108 atoms at a reduced density of ρ = 0.01 corresponding to the LVs:
(a) α = 1 and (b) α = 320.

Next, we proceed to consider the spatial Fourier transform of u(α)(r, t), which can be
written as

ũ(α)(k, t) =
∫

u(α)(r, t) exp (−ik · r) dr

=
N∑

i=1

δr(α)
i exp[−ik · ri (t)].

To proceed further we invoke the static LV density correlation function of [44], defined as

C(α)(k, t) ≡ ũ(α)(k, t )̃u(α)(−k, t), (6)

which in the case of our 3D system is a second-rank tensor. For our isotropic fluid the Cartesian
components C(α)

µν (k, t) of C(α)(k, t) can be written in terms of longitudinal C
(α)
L and transverse

C
(α)
T static correlation functions as

C(α)
µν (k, t) = k̂µk̂νC

(α)
L (k, t) + (δµν − k̂µk̂ν)C

(α)
T (k, t), (7)

with k̂µ = (k/k)µ. From this last expression it is immediate to obtain the explicit form of the
longitudinal and transverse static correlation functions as

C
(α)
L (k, t) = C(α)

µν (k, t)k̂ν k̂µ

C
(α)
T (k, t) = 1

2

(
C(α)

νν (k, t) − C(α)
µν (k, t)k̂ν k̂µ

)
.

To simplify the analysis we will consider a coordinate system such that the wave vector
k is parallel to the z-axis. Then

ũ(α)(k, t) =
N∑

i=1

δr(α)
i exp[−ikzzi(t)]. (8)
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Figure 5. (a) Time evolution of the peak wave-number kmax and (b) spectral entropy H
(α)
L (t) for

a Lyapunov index value of α = 320, for N = 108, ρ = 0.01 and T = 1.5. The behavior of these
quantities corresponding to the transverse correlation function C

(α)
T (k, t) (not shown) is almost the

same as that depicted in the above figure.

For homogeneous systems with translational invariance the Fourier transformed components
of a quantity such as the spatial LV density

{̃
u(α)

ν

}
, where ν = x, y, z, are uncorrelated [45].

Thus, our simplification in no way destroys essential information. The spatial Fourier spectrum
P (α)

νν (kz, t) ≡ ∣∣̃u(α)
ν (kz, t)

∣∣2
corresponding to each component of the spatial density of δr(α)

i

can be readily computed by an algorithm for unequally spaced data points [46], which has
been previously applied to the 1D LJ [20] and the 2D WCA systems [21]. Furthermore, we
observe that the diagonal components of the static LV density correlation function correspond
to the spatial Fourier spectrum, i.e. C(α)

νν (kz, t) ≡ P (α)
νν (kz, t). Thus the static longitudinal and

transverse correlation functions can be obtained from the aforementioned power spectra as

C
(α)
L (kz, t) = P (α)

zz (kz, t)

C
(α)
T (kz, t) = 1

2

(
P (α)

xx (kz, t) + P (α)
yy (kz, t)

)
.

Finally, since averaging over several spatially equivalent directions will improve the statistics,
we take successively the k vector along the remaining coordinate axes x and y to obtain two
more sets of longitudinal and transverse correlation functions and then average over all sets.
The result is longitudinal C(α)

L (k, t) and transverse C
(α)
T (k, t) correlation functions independent

of the employed coordinate system.
At variance with the hard-core systems in which the patterns resembling transverse modes

do not survive time averaging [19], the Fourier spectral techniques so far presented have been
quite successful in the case of the 1D LJ system, and so there is a reasonable possibility of
success in the case of our 3D LJ fluid.

4.2. Time instability of instantaneous quantities

Due to their mutual interaction, the LMs in all soft potential systems are only of finite life-time.
To investigate their time stability we present in figure 5 the time evolution of two quantities
associated with the longitudinal static correlation function C

(α)
L (k, t) for the LV α = 320: the

peak wave number kmax, which indicates the position of the highest peak in the spatial Fourier
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spectrum P (α)
zz (k, t), and the spectral entropy H

(α)
L (t) [47], which measures the k distribution

properties of the aforementioned spectrum. This last quantity was first employed in [20] in
the study of the 1D LJ gas and is defined as

H
(α)
L (t) = −

∑
k

C
(α)
L (k, t) ln C

(α)
L (k, t). (9)

For the 1D LJ system these quantities show an intermittent behavior, i.e. large intervals of
nearly constant low values (off state) are interrupted by short periods of bursts (on state) where
they experience large values [20]. As can be appreciated in figure 5(a) for the time evolution
of the peak wave number kmax, this behavior is somewhat different in our case; although there
is an alternation between the on- and off-states, the mixing among them is so great that there
are no long-lived time intervals for either state, in sharp contrast to the 1D case. The instant
value of the spectral entropy, presented in figure 5(b), has a similar behavior as that of kmax in
the sense that it is not easy to identify a correspondence between its temporal evolution and
that of the on- and off-states. A virtually identical behavior is obtained for kmax and H

(α)
T (t),

but now defined in terms of C
(α)
T (k, t) (not shown), and for all values of the reduced density.

This intermittency in the time evolution of the spatial Fourier spectrum of LVs is a typical
feature of soft-potential systems. However, this behavior is greatly increased in comparison
to the 1D case. There are two possible causes for this difference with the 1D results: first, the
reduced temperature at which we are working is much higher (an order of magnitude) than that
employed in [20]; second, the dimensionality of our system is also higher, thus the mixing is
easier by this enlargement in the phase space, as already explained. Now, in order to average
out temporal fluctuations, and thus extract useful information about the collective modes, from
now on we will study the properties of the average spectra

〈
C

(α)
L (k, t)

〉
t

and
〈
C

(α)
T (k, t)

〉
t
, where

〈· · ·〉t means temporal average. Further insight into the temporal dynamics of the LMs can
be obtained by studying the dynamic LV density correlation function first introduced in [44]
for the 1D LJ gas. In the appendix some preliminary results of the aforementioned dynamical
correlation function applied to our 3D LJ fluid will be presented.

4.3. Time-averaged power spectrum

Figures 6(a) and (b) display, for ρ = 0.01,
〈
C

(α)
L (k, t)

〉
t

and
〈
C

(α)
T (k, t)

〉
t
, respectively. In both

cases we can readily appreciate that the contribution of the high-wave-number components is
not small. The instantaneous power spectra are not dominated by a single peak; rather, several
small peaks, which are related to intermediate length scales, are present, which in turn make
significant contributions to the overall shape of the time-averaged correlation functions for
large k values. This feature can be explained by the less pronounced timescale separation than
in the 1D case, as mentioned in section 3 in relation to the LS. Nevertheless, the highest value
of the time-averaged correlation functions is always dominated by certain low-wave-number
components; for the longitudinal correlation function we observe that the sharp-valued peak
in the spectrum corresponds to diminishing kmax values as the Lyapunov index α → 3N , i.e.
as we go from the region of high LEs to the region of low LEs. At this point it is important
to note that this correspondence is not monotonic, since the kmax value of the highest peak is
attained at α = 200, and the height of the corresponding peak slightly diminishes, although
remains well defined, for higher α values. For the transverse correlation function depicted in
figure 6(b) the results are similar, except for a very important feature: the highest value of
the spectra is again attained at α = 200, a value far away of the region corresponding to the
lowest LEs, but then vanishes as α → 3N . This feature is not consistent with the existence of
well-defined transverse LMs, since it would be expected that the highest peak in the transverse
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(a)

(b)

Figure 6. (a) The time-averaged longitudinal correlation function 〈C(α)
L (k, t)〉t and (b) the time-

averaged transverse correlation function 〈C(α)
T (k, t)〉t for various values of the Lyapunov index α,

with parameters N = 108, T = 1.5 and ρ = 0.01. In the inset the static structure factor S(k) of
the system is plotted.

correlation function should correspond to small values of kmax in the α ≈ 3N regime. In the
inset the static structure factor S(k) [43] for the corresponding thermodynamic state is plotted.
The highest peak of this function is located at k/2π ≈ 0.08. Now, the position of the peak
in

〈
C

(α)
L (k, t)

〉
t

is located at kmax ≈ 0.04. This value suggests that there is no obvious direct
connection between the short-range order of the atoms and the lowest wave vector peak of the
longitudinal LV correlation function.

The longitudinal and transverse correlation functions corresponding to the reduced density
ρ = 0.5 are presented in figures 7(a) and (b), respectively. A difference with respect to the
low density results is that the highest peak in each power spectrum is broader than in the
corresponding low-density case. This can be interpreted as an indication that the influence
of higher wave numbers is stronger than in the low-density case. We further observe that
the highest peak is located at a higher wave number value than the corresponding peaks in
figures 6(a) and (b). Now, although at this density there is a higher degree of spatial order in
the atoms of the system, the lowest wave vector peak of S(k), which is plotted in the inset,
has no relation whatsoever with the kmax value of the time-averaged transverse LV correlation
function. Next we note that the highest peak of the transverse correlation function is reached at
a value of the Lyapunov index of α = 200, with a monotonic decrease for higher α values. This
same result was obtained for the transverse correlation function in the low-density regime,
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Figure 7. (a) Time-averaged longitudinal and (b) transverse correlation functions for the same
parameters as in figure 6, but with a reduced density of ρ = 0.5.

although in this case the peak remains well defined, in contrast to the result displayed in
figure 6(b), which is almost a flat spectrum.

So far our results are consistent with the existence of longitudinal LMs. To quantify the
properties of these modes in figure 8(a) we plot kmax versus the Lyapunov index α. It is clear
from this figure that, as α → 3N, kmax diminishes. A feature that stands out is that, despite
the time averaging over a large number of data points (106 time steps), the obtained values
remain somewhat noisy. Nevertheless it is clear from the figure that the decrease in the kmax

value as α increases is approximately monotonic, in clear contrast to the 1D case [20] in
which a sudden change of kmax from a finite value to zero was interpreted as a signature of the
separation of timescales mentioned in section 3. Next, in figure 8(b) the height

〈
C

(α)
L (kmax, t)

〉
t

of the highest peak in the time-averaged longitudinal correlation function is also plotted as a
function of the Lyapunov index α. On average we can observe a monotonic increase of the
peak value as the Lyapunov index α goes from small to large values, although a small decrease
can be noticed in the α ≈ 3N region. Finally, from the definition given in equation (9), it is
immediate to obtain the average spectral entropy 〈HL〉t which is presented, again as a function
of α, in figure 8(c). Its value decreases as the Lyapunov index increases. This in turn means
that LVs corresponding to smaller positive LEs are more localized in Fourier space, i.e. they
have more wave-like character than those corresponding to larger LEs. However, the decrease
in the value of 〈HL〉t as the Lyapunov index increases is not monotonic. We note that already
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Figure 8. (a) Wave number kmax of the highest peak in the time-averaged longitudinal correlation
function 〈C(α)

L (k, t)〉t for each α value. (b) The height 〈C(α)
L (kmax, t)〉t of the highest peak in

the time-averaged correlation function. (c) Average spectral entropy 〈HL〉t . The parameters are
ρ = 0.01, N = 108 and T = 1.5.

for α = 200 the average spectral entropy has reached its minimum value, but presents a slight
increase as α → 3N , which certainly accounts for the decrease in the height of the peak in the
average spectra of figure 6(a). Our tentative conclusion at this point is that the longitudinal
LMs are more vaguely defined than in the 1D case for this density value.

The results corresponding to the transverse correlation function
〈
C

(α)
T (k, t)

〉
t

are presented
in figure 9. We observe that the α range for which kmax has a small value is broader compared
to the results in figure 8(a). However, kmax has a slight increase in value as α ≈ 3N , a result
which is not consistent with the existence of a transverse Lyapunov mode for this α range.
This conjecture is supported by the behavior of

〈
C

(α)
T (kmax, t)

〉
t

displayed in figure 9(b). This
last quantity has its maximum at α ≈ 200, with a corresponding minimum of 〈HT 〉t at the
same α value, as seen in figure 9(c). This feature of the spectral entropy is inconsistent with
localization in Fourier space; that is, the wave-like character of the LVs is largely diminished
in the low-α region. Taken together these results make it difficult for us to unambiguously
ascertain the existence of transverse LMs in the 3D LJ system.

For the case of high reduced density ρ = 0.5 figure 10(a) presents the results for
kmax versus the Lyapunov index α corresponding to the longitudinal correlation function〈
C

(α)
L (k, t)

〉
t
. The behavior displayed is very different to that shown in figure 8(a). We first

note that the fluctuations of all quantities are much smaller than those corresponding to the
low-density value. In the present case the value of kmax stays close to 1 for α � 100. Then,
as α further increases and after a small transient interval, kmax drops rather sharply to a
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Figure 9. Same variables as in figure 8, but corresponding to the time-averaged transversal
correlation function 〈C(α)

T (k, t)〉t . Same values of N, ρ and T as in figure 8.

value slightly lower than 0.2, which is consistent with that obtained from figure 7(a). Next, in
figure 10(b) we observe that the value of

〈
C

(α)
L (kmax, t)

〉
t
decreases smoothly from its maximum

at α ≈ 3N down to its minimum at α ≈ 100. Finally, in figure 10(c) we observe that, at
variance with the low-density result, the value of the average spectral entropy 〈HL〉t decreases
monotonically in the whole range of α values, with a minimum for α ≈ 3N where the LEs
are the smallest possible ones. From the definition of the spectral entropy we conclude that
the corresponding spectra for these LVs are most significantly dominated by a few k values.
Thus the LMs are more sharply defined than in the low-density case: a very intriguing state
of affairs, since no relation was found between the spatial order of the atoms as described by
S(k) and the highest peak in the LV power spectrum at any density value.

The results for the transverse correlation function
〈
C

(α)
T (k, t)

〉
t

for the highest density
studied are presented in figure 11, which display a much reduced fluctuation level, but have
nevertheless a very similar behavior, compared to those in figure 9 corresponding to the low-
density case. That is, the maximum value of

〈
C

(α)
T (kmax, t)

〉
t
, which is coincident with the

minimum value of 〈HT 〉t , is present in a range of α values that is far from the region in which
α ≈ 3N , a result not entirely consistent with the existence of transverse LMs.

5. Discussion

The overall picture that emerges from our results so far indicates a tangent-space dynamics
much more complicated than that of hard-core systems or the 1D LJ fluid. The strong
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Figure 10. Same variables as in figure 8 for the time-averaged longitudinal correlation function
〈C(α)

L (k, t)〉t corresponding to the high-density value ρ = 0.5.

fluctuations in the LEs mentioned in section 3 produce a strong mixture among modes, so
it is unreasonable to expect that results of the spectral analysis could convey information
concerning pure modes. Indeed, the maximum wave number kmax for both the longitudinal
and transverse correlation functions is highly unstable. In the time interval depicted in figure 5
for the longitudinal case the kmax value very rarely stays close to zero. Rather, it seems to
wander randomly between zero and one. The instantaneous value of the spectral entropy,
equation (9), also seems to have a seemingly random time evolution. Finally, there seems to
be no correlation between the time evolution of kmax and H

(α)
L (t), which was discovered in

the case of the 1D LJ system and which greatly contributed to a clear-cut definition of the
so-called on- and off-states [20]. This is a first indication that the detection of LMs becomes
more difficult than in the corresponding 1D case.

It turns out that the time-averaged longitudinal and transverse correlation functions are
the relevant variables from which meaningful information about the LMs can be obtained.
This fact can be understood in terms of the Zwanzig–Mori formalism, in which the Fourier
components of the fluctuation of a conserved density vary slowly for a small wave number
[45]; from these ‘slow’ variables a meaningful description is then extracted. For the tangent-
space dynamics the time-averaged longitudinal and transverse correlation functions can be
considered as the ‘slow’ variables. The results presented in figures 6 and 7 show that this
is indeed the case; the spectra are dominated by low-wave-number values, i.e. kmax ≈ 0.04
for ρ = 0.01 and kmax ≈ 0.16 for ρ = 0.5, both for longitudinal and transverse correlation
functions, with a corresponding broader peak in the latter case. In both cases kmax ≈ 2π/L,
which is the smallest nonzero wave number allowed by the periodic boundary conditions used
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Figure 11. Same variables as in figure 8 for the time-averaged transverse correlation function
〈C(α)

T (k, t)〉t corresponding to the high-density value ρ = 0.5.

(smaller k values are due to the oversampling inherent to the method, see [46]). Another point
to be noted is that, for our particular system, the longitudinal correlation function reaches
its maximum value at α ≈ 200, and then its height diminishes slightly, but with the peak
position kmax unchanged, as α → 3N . These results can be attributed to a complicate mixing
of pure modes in the low-k regime, which produces the observed degeneracy of the k value
with respect to the α index. Thus the obtained LMs lose their hydrodynamic character and no
dispersion relation kmax versus λ(α) as those observed in the 1D LJ fluid [20] and hard-core
systems [48] could be detected. Our results even stand in contrast to those of 2D coupled map
lattices, for which a dispersion relation λ ∼ kmax indeed exists [23], and even more sharply to
those of the 2D LJ fluid, for which a corresponding dispersion relation has been claimed to
hold, although for this last model the evidence seems so far to be inconclusive [44].

The most convincing evidence of the existence of longitudinal LMs for the low-density
state comes from the results of figure 8. First we observe that the average spectral entropy
attains its minimum at α ≈ 200, a result not entirely inconsistent with those of random matrix
theory [14]. Next, as α → 3N , the value of this quantity remains close to this minimum.
Taken together with the already obtained position of the highest peak in the power spectrum
in the region α ≈ 3N depicted in figure 6(a), these results are compelling evidence of the
existence of longitudinal LMs. The fuzziness of the obtained values of the reported quantities
also led us to suppose that the mixing between modes is strong. Up to this point we can affirm
that longitudinal LMs do indeed exist, but are more vague than in the 1D LJ gas and with no
hydrodynamical character at all. On the other hand, our results on the transverse correlation
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function displayed in figure 9, despite their fluctuations, show a tendency that does not allow
us to unambiguously classify them as transverse LMs.

The most important result of this paper was presented in figure 10 for ρ = 0.5. Besides a
much reduced fluctuation in the studied variables, a very defined jump in kmax at α ≈ 100 is
observed. The importance of this fact is that, for the 1D LJ gas, a similar jump was observed,
but for a low-density value [20]. In that system this behavior was interpreted in terms of a
separation of timescales signaled by a bending in the LS. In contrast, we obtain a sharply
defined jump in kmax at a ρ value in which the corresponding LS shows no bending, as can
be observed in figure 3. In order to try to understand this seemingly puzzling result, we have
to remember that, from the suspected importance of hyperbolicity for the appearance of the
LMs [14], the main results for the 1D LJ fluid were obtained in a relatively diluted regime
[20], which made this system somewhat similar to hard-core systems previously studied [48].
However, for ρ = 0.5 our system is far from complete hyperbolicity, since the combination of
attractive and repulsive interactions induces strong correlations between the collision events
that makes it difficult to separate them from each other. At the same time, the aforementioned
density value is not high enough to make the effective interaction among atoms similar to that
of a lattice of anharmonic oscillators in which hydrodynamic LMs have been detected [25].
Thus there is no obvious mechanism that could account for the sharp jump in kmax when there
is no bending in the LS. Therefore the role of the alleged separation of timescales, inferred
from the LS bending for the 1D LJ gas, seems to bear no relation to the appearance and
phenomenological description of the LMs in our 3D LJ fluid.

6. Conclusion

In this paper we have performed a study of the tangent-space dynamics of the 3D LJ fluid
in order to investigate the possible existence of the LMs which are a distinctive feature of
the hard-core systems. Our results indicate that longitudinal modes indeed exist for low
and high reduced density values, and no conclusive evidence of transverse modes for either
density is studied. The lack of a dispersion relation between the LEs and the maximum wave
number makes both types of modes markedly different from those already encountered in
other systems. The longitudinal LMs turn out to be much better defined for high values of the
reduced density. Previously only in hyperbolic systems could LMs be detected at high density
values [48]. It is highly plausible that by changing the thermodynamic state of the system the
LMs could present a different behavior than that reported in the present paper.
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Appendix. Dynamical LV correlation functions

From the Fourier transform of the spatial LV density u(α)(r, t), equation (5), we can define the
intermediate two-time correlation function as

F (α)(k, τ ) ≡ 〈̃u(α)(k, t + τ )̃u(α)(−k, t)〉t , (A.1)

which in the 3D case is a second-rank tensor with components F (α)
µν (k, τ ). Since the results

of section 4.3 point clearly to the existence of longitudinal LMs, we will concentrate
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Figure 13. Normalized DLVDCF corresponding to α = 320, but for ρ = 0.5. Same T and N
values as in figure 12.

on the longitudinal component of this function. By following the same methodology
of section 4.1 we are led to an expression for the longitudinal component of the form
F

(α)
L (kz, τ ) = 〈̃

u(α)
z (kz, t +τ )̃u(α)

z (−kz, t)
〉
t
. Taking k parallel to the other coordinate directions

and averaging we obtain the final form F
(α)
L (k, τ ). For τ = 0 we recover the time average

of the static LV correlation function, i.e.
〈
C

(α)
L (k, t)

〉
t
= F

(α)
L (k, τ = 0). The dynamical LV

correlation function encodes structural as well as temporal correlations, and thus provides
more detailed information of the system.

By Fourier transformation with respect to time we obtain the dynamical LV density
correlation function (DLVDCF) as S(α)(k, ω) = (2π)−1

∫
F

(α)
L (k, τ ) exp(iωτ) dτ . In figure 12

we present the result for ρ = 0.01 and α = 320 for the longitudinal DLVCF at various integer
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multiples of the wave vector k = 2π/L. It can be observed that, besides the central peak,
smaller peaks are present as the frequency ω increases. This result implies that the tangent-
space dynamics is described by a set of characteristic frequencies, which may have their
origin in the lack of timescale separation already advanced in section 3. However, restricting
our attention to the lowest frequencies, it is clear that the position ωc of the first peak can
be unambiguously defined for the lowest k value; a similar identification can be made for
other low k values. Thus a dispersion relation ω(α)(k) for different α values can be extracted.
The result is presented in the inset of the same figure. It is observed that an approximately
linear dispersion relation is obtained and thus, besides the characteristic wave vector k(α)

for each LM already determined in section 4.3, each mode can also be characterized by a
frequency ωc(k

(α)). The non-vanishing value of dω/dk seems to imply propagating wave-like
excitations.

The result for the longitudinal DLVDCF at ρ = 0.5 is presented in figure 13. In sharp
contrast to the low-density state no structure can be observed whatsoever at any wave vector
number. No characteristic frequency can easily be identified, which implies that no propagation
of any wave-like structures occurs at any wave vector number. Thus the tangent-space structure
described in figure 10 remains unaltered within the timescales studied. More details of the
temporal dynamics in tangent space will be presented in a forthcoming study.
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Gas ed D Szàsz (Berlin: Springer) pp 279–314
[14] Eckmann J-P and Gat O 2000 J. Stat. Phys. 98 775
[15] Taniguchi T and Morriss G P 2002 Phys. Rev. E 65 056202
[16] Taniguchi T, Dettmann C P and Morriss G P 2002 J. Stat. Phys. 109 747
[17] McNamara S and Mareschal M 2001 Phys. Rev. E 64 051103

Mareschal M and McNamara S 2004 Physica D 187 311
[18] de Wijn A S and van Beijeren H 2004 Phys. Rev. E 70 016207
[19] Hoover Wm G, Posch H A, Forster Ch, Dellago C and Zhou M 2002 J. Stat. Phys. 109 765
[20] Yang H L and Radons G 2005 Phys. Rev. E 71 036211
[21] Forster Ch and Posch H A 2005 New J. Phys. 7 32
[22] Yang H L and Radons G 2006 Phys. Rev. Lett. 96 074101
[23] Yang H L and Radons G 2006 Phys. Rev. E 73 016202
[24] Yang H L and Radons G 2006 Phys. Rev. E 73 016208
[25] Yang H L and Radons G 2006 Phys. Rev. E 73 066201
[26] Allen M P and Tildesley D J 1987 Computer Simulations of Liquids (Oxford: Oxford University Press)
[27] Stoddard S D and Ford J 1973 Phys. Rev. A 8 1504

20

http://dx.doi.org/10.1103/PhysRevA.36.962
http://dx.doi.org/10.1103/PhysRevE.59.2746
http://dx.doi.org/10.1103/PhysRevE.57.6599
http://dx.doi.org/10.1103/PhysRevE.65.036228
http://dx.doi.org/10.1103/PhysRevE.69.056204
http://dx.doi.org/10.1103/PhysRevA.42.5990
http://dx.doi.org/10.1103/PhysRevLett.76.1812
http://dx.doi.org/10.1103/PhysRevE.55.3439
http://dx.doi.org/10.1103/PhysRevE.54.6084
http://dx.doi.org/10.1103/PhysRevLett.83.2676
http://dx.doi.org/10.1103/PhysRevLett.83.2677
http://dx.doi.org/10.1080/002689798167205
http://dx.doi.org/10.1023/A:1018679609870
http://dx.doi.org/10.1103/PhysRevE.65.056202
http://dx.doi.org/10.1023/A:1020422917270
http://dx.doi.org/10.1103/PhysRevE.64.051103
http://dx.doi.org/10.1016/j.physd.2003.09.018
http://dx.doi.org/10.1103/PhysRevE.70.016207
http://dx.doi.org/10.1023/A:1020474901341
http://dx.doi.org/10.1103/PhysRevE.71.036211
http://dx.doi.org/10.1088/1367-2630/7/1/032
http://dx.doi.org/10.1103/PhysRevLett.96.074101
http://dx.doi.org/10.1103/PhysRevE.73.016202
http://dx.doi.org/10.1103/PhysRevE.73.016208
http://dx.doi.org/10.1103/PhysRevE.73.066201
http://dx.doi.org/10.1103/PhysRevA.8.1504


J. Phys. A: Math. Theor. 41 (2008) 375101 M Romero-Bastida and E Braun

[28] Smit B 1992 J. Chem. Phys. 96 8639
[29] Oseledec V I 1968 Trans. Moscow Math. Soc. 19 197
[30] Benettin G, Galgani L and Strelcyn J M 1976 Phys. Rev. A 14 2338
[31] Shimada I and Nagashima T 1979 Prog. Theor. Phys. 61 1605
[32] Johnson R A, Palmer K J and Sell G R 1987 SIAM J. Math. Anal. 18 1
[33] Goldhirsch I, Sulem P L and Orszag S A 1987 Physica D 27 311
[34] Ershov S V and Potapov A B 1998 Physica D 118 167
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